THEORETICA CHIMICA ACTA

© Springer-Verlag 1985

A simple eigenvalue sum-density relationship for atoms

Kali D. Sen and Sai Nath

School of Chemistry, University of Hyderabad, Hyderabad-500 134, India

(Received May 30, 1984, revised August 21, 1984)

In recent years several attempts have been made [1-3] to obtain an energyeigenvalue sum relationship for atoms and molecules. Such studies are useful in providing a sound theoretical basis for the successful Walsh and Woodward-Hoffmann rules which are based on the eigenvalue sum, E^s , in place of the total energy *E*. Unfortunately a general quantitative energy-eigenvalue sum relationship is not as yet available.

The purpose of this letter is to approach the problem from the one electron density, $\rho(r)$, point of view. We shall be concerned with a given isoelectronic series of atoms. We propose that within such a series

$$E^{s} \approx C_{1} \langle \rho \rangle^{2/3} + C_{2} \langle \rho \rangle^{1/3}$$
⁽¹⁾

where E^s denotes the eigenvalue-sum $\sum v_i \varepsilon_i$ and the average density expectation value is given by $\langle \rho \rangle = \int \rho^2 d\tau$. Hyman et al. [4] have obtained a reasonably tight lower bound on $E^{3/2}$ in terms of $\langle \rho \rangle$ which is given by

$$\frac{\langle \rho \rangle}{E^{3/2}} \le 0.205. \tag{2}$$

These authors noted that the numerical value of the ratio $\langle \rho \rangle / E^{3/2}$ remains constant within an atomic N-electron series.

Based on the scaling arguments due to Szasz et al. [5] it has been shown [6] numerically that an excellent representation of the total electron-electron repulsion energy, V_{ee} , for atoms can be written as

$$V_{ee} = 0.3977 \, N^{4/3} \langle \rho \rangle^{1/3} \tag{3}$$

Offprint request to: K. D. Sen

using Eqs. (2)-(3), respectively, in the form

$$E = C_1 \langle \rho \rangle^{2/3} \tag{4}$$

and

$$V_{ee} = C_2 \langle \rho \rangle^{1/3} \tag{5}$$

in the Hartree-Fock (HF) identity

$$E^s = E + V_{ee} \tag{6}$$

leads to Eq. (1).

In Table 1 we have listed the values of the fitting parameters C_1 and C_2 corresponding to the He, Li, and Be isoelectronic series along with the regression coefficient 'r'. All the fits are found to have excellent 'r' values.

In Table 2 we have presented the values of $\langle \rho \rangle^{1/3}$ and E^s based on the analytic Hartree-Fock wave functions [7] and the values of E^s obtained from Eq. (1). These results show that Eq. (1) provides a good quantitative relationship for E^s in terms of $\langle \rho \rangle$. We also note that the quantity $2\langle \rho \rangle^{1/3}$ closely approximates the value of Z, the atomic number, and it is therefore tempting [8] to represent E^s and the total HF energy E in terms of a polynomial in $\langle \rho \rangle^{1/3}$. A polynomial fit

	Fitting 1	parameters	
Series	$-C_1$	<i>C</i> ₂	Regression coefficient
Не	3.3975	1.1063	0.9999
Li	3.5160	1.6712	0.9999
Be	3.5972	2.3937	0.9999

Table 1. Fitting parameters C_1 and C_2 in Eq. (1) for the He, Li, and Be isoelectronic series respectively

Table 2. The values of $\langle \rho \rangle^{1/3}$ and $E^s(H.F.)$ based on the Hartree-Fock wave functions (Ref. 4 and Ref. 7) for some members of the He, Li, and Be series. E^s values obtained from Eq. (1) are given in the last column

Series	$\left< ho ight>^{1/3}$	<i>E^s</i> (<i>H.F.</i>)	E^{s} (Fitted)
He	0.9153	1.836	1.831
Li ⁺	1.4551	5.585	5.582
N ⁵⁺	3.6225	40.584	40.579
Li	1.4642	5.152	5.091
Be ⁺	2.0210	10.943	10.984
O ⁵⁺	4.2572	56.723	56.609
Be	2.0325	10.076	9.994
B ⁺	2.6060	18.119	18.192
O ⁴⁺	4.3353	57.366	57.232

140

			Fitting parame	ters		
Series	A	B	c	D	E	 Average % error
He E ^{HF}	-3.406	-0.940 (-2)	-0.101 (-1)	-0.192 (-1)	0.261 (-1)	0.3 (-3)
E^{S}	-3.406	1.152	-0.583(-1)	0.999(-2)	0.937(-2)	0.6(-3)
Li E ^{HF}	-3.590	0.243	-0.189	0.253	-0.161	0.8(-3)
E^{S}	-3.590	0.243	-0.189	0.253	-0.161	0.8(-3)
Be E ^{HF}	-3.738	0.519	-0.381	0.696	-0.613	0.1(-3)
Es	-3.729	3.111	-0.560	-0.921	0.705 (-1)	0.1(-3)

A simple eigenvalue sum-density relationship for atoms

of E^s (and E^{HF}) according to

$$E^{s} = A\langle \rho \rangle^{2/3} + B\langle \rho \rangle^{1/3} + C + D\langle \rho \rangle^{-1/3} + E\langle \rho \rangle^{-2/3}$$
(7)

is given in Table 3 for the He, Li and Be series respectively. Such polynomials can be used to obtain the estimates of E^s from the experimentally determined $\langle \rho \rangle$ values.

We wish to point out that Eq. (1) is only a semiempirical result in the sense that although its form can be arrived at in a purely theoretical manner, the actual constants C_1 and C_2 have been obtained using the available *HF* data. In the light of the existence of a unique energy density functional for the ground state of an *N*-electronic system [9] and Eq. (1), we conclude that the energy-eigenvalue sum relationship can be understood in terms of the single particle density.

References

- 1. Ruedenberg, K.: J. Chem. Phys. 66, 375 (1977)
- 2. Robinson, B. H., Schaad, L. J.: J. Chem. Phys. 59, 6189 (1973)
- 3. Murdoch, J. R., Magnoli, D. E.: J. Chem. Phys. 77, 4558 (1982), for a brief review
- 4. Hyman, A. S., Yaniger, S. I., Liebman, J. F.: Int. J. Quantum Chem. 14, 757 (1978)
- 5. Szasz, L., Berrios-Pagan, I., McGinn, G.: Z. Naturforsch. Teil A 30, 1516 (1975)
- 6. Gadre, S. R., Bendale, R. D.: J. Chem. Phys. 78, 996 (1983)
- 7. Clementi, E., Roetti C.: At. Data Nucl. Data Tables 14, 177 (1974)
- 8. Sen, K. D.: J. Phys. B 12, L287 (1979)
- 9. Hohenberg, P., Kohn, W.: Phys. Rev. B 136, 864 (1964)

142